II B.Tech - I Semester - Regular Examinations - MARCH 2021

ENGINEERING MATHEMATICS - III
 (Discrete Mathematical Structures)
 (Common to CSE, IT)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Show that $\sim(P \rightarrow Q) \equiv P \Lambda \sim Q$ by constructing the truth table.
b) Symbolize the statement: Some integers are prime numbers.
c) Solve the recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=0, n \geq 2$
d) Let $R=\{(1,1),(1,2),(2,3),(3,3),(3,4)\}$ be a relation on $A=\{1,2,3,4\}$.

Find R^{2}.
e) Define Tree with an example.

PART - B
 UNIT - I

2.

a) Prove that $[P \rightarrow(Q \rightarrow R)] \rightarrow[(P \rightarrow Q) \rightarrow(P \rightarrow R)]$ is a tautology.
b) Obtain the principal conjunctive normal form of

$$
[(P \rightarrow Q) \Lambda \sim(\sim Q \vee \sim P)]
$$

OR

3. a) Prove that $\sim(P \wedge Q) \rightarrow[\sim P \bigvee(\sim P \vee Q)] \Leftrightarrow(\sim P \bigvee Q)$
b) Obtain a disjunctive normal form of $[Q \vee(P \wedge R)] \wedge \sim[(P \vee Q) \wedge R]$

UNIT - II

4. a) Show that $R \wedge(P \vee Q)$ is a valid conclusion from the premises $P \vee Q, Q \rightarrow R, P \rightarrow M$ and $\sim \mathrm{M}$
b) Verify the validity of the following argument:

Tigers are dangerous
There are tigers
Therefore, there are dangerous animals
5. a)

Prove that $(\forall x)(P(x)) \vee(\forall x)(Q(x)) \rightarrow(\forall x)(P(x) \vee Q(x))$ is logically valid
b) By indirect proof, show that

$$
\mathrm{P} \rightarrow \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R}, \sim(P \wedge R),(P \vee R) \Rightarrow R
$$

UNIT-III

6. Solve the recurrence relation $a_{n}-4 a_{n-1}+4 a_{n-2}=0, n \geq 2$
a)
with $a_{0}=\frac{5}{2}$ and $a_{1}=8$ using the characteristic roots.
b) Solve $a_{r}-6 a_{r-1}+8 a_{r-2}=9, r \geq 2$ with $a_{0}=10$ and $a_{1}=25$.

OR

7. a) Find the general solution of $a_{n-}-7 a_{n-1}+10 a_{n-2}=7 \cdot 3^{n}, n \geq 2$
b) Solve $a_{n}-7 a_{n-1}+16 a_{n-2}-12 a_{n-3}=0, n \geq 3$ with $a_{0}=1, a_{1}=4$ and $a_{2}=8$ using the characteristic roots.

UNIT - IV

8. a)

Let $R=\{(a, b),(b, c),(c, d),(b, a)\}$ be a relation on $A=\{a, b, c, d\}$.
Find the transitive closure of R.
b) Let \mathbf{z} denote the set of integers and the relation R on z be defined by $a R b$ if and only if $a-b$ is an integer. Prove that R is an equivalence relation.

OR

9. a) Let R be a relation on $A=\{1,2,3,4,6\}$ defined by $a R b$ if and only if a is a multiple of b. Represent the relation matrix for R and draw its digraph.
b) Let $P(S)$ denote the power set defined on $S=\{1,2,3\}$. The relation R on $P(S)$ defined by $X R Y$ if and only if $X \subseteq Y$. Show that R is a partial order on $P(S)$. Draw its Hasse diagram.

UNIT - V

10. a) Check whether the following graph is planar or not. Justify your answer

6 M
b) Check whether the following graph has an Euler circuit. Construct such a circuit if it exists

6 M
OR
11. a) Check whether the following graphs are isomorphic or not. Justify your answer

G

G^{\prime}
b) Find the chromatic number of the following graph

6 M

